Deoxygenations of (silox)₃WNO and R₃PO by $(silox)_3M$ (M = V, Ta) and $(silox)_3NbL$ (silox = ^tBu₃SiO): Consequences of Electronic Effects

Adam S. Veige,[†] Lee M. Slaughter,[†] Peter T. Wolczanski,^{*,†} Nikita Matsunaga,[‡] Stephen A. Decker,[§] and Thomas R. Cundari*,§

> Cornell University Department of Chemistry and Chemical Biology Baker Laboratory, Ithaca, New York 14853 Received December 27, 2000

Oxygen atom transfers involving terminal metal-oxo functionalities are central to many biological transformations,¹ prominent in applications to organic synthesis,²⁻⁴ and of increasing importance in inorganic systems as synthetic tools,^{5–7} objectives in biomimicry,^{1,8,9} and targets of fundamental studies.⁵⁻¹³ As a synthetic route to $(silox)_3$ WN (4, $silox = {}^{t}Bu_3SiO$), the deoxygenation of (silox)₃WNO (2) by (silox)₃Ta (1-Ta) was attempted without success, despite ample precedent in cleavages of epoxides,10 N2O, NO,11 CO2, and CO.12 A comparison study involving sources of $M(silox)_3$ (1-M; M = V, Nb, Ta) revealed that features of deoxygenations of 2 and R_3PO (R = Me, Ph, ^tBu) are the consequences of electronic effects enforced by a limiting steric environment.

Table 1. summarizes the deoxygenation studies, and shows that (silox)₃Ta (1-Ta) preferred to cyclometalate to (silox)₂-

HTaOSi^tBu₂CMe₂CH₂ (5-Ta, 87%, 14 d)¹³ rather than deoxygenate $(silox)_3$ WNO $(2)^{14}$ to $(silox)_3$ WN (4, 12%),¹⁴ whereas the smaller (silox)₃V (1-V)¹⁴ slowly (85 °C, $\sim 1.4 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$) converted 2 to the nitride. $(silox)_3Nb(\eta^2-N,C-4-picoline)$ (1-Nb-(4-pic), S = 0¹¹ and (silox)₃NbPMe₃ (1-NbPMe₃, S = 1)¹⁴ deoxygenated 2 and formed 4 and (silox)₃NbO (3-Nb) swiftly at first, then more slowly as the released 4-picoline and PMe₃ inhibited the reactions, respectively. With a 4-picoline scavenger (1-Ta) present in the former, swift cyclometalation to $(silox)_2$ -

Cornell University.

(1) (a) Cytochrome P450, Structure, Mechanism and Biochemistry, 2nd

ed.; Ortiz de Montellano, P. R., Ed., Plenum: New York, 1995. (b) Enemark, J. H.; Young, C. G. Adv. Inorg. Chem. 1993, 40, 1-88.

(2) (a) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Güler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. **1998**, 120, 948–954. (b) Finney, N. S.; Pospisil, P. J.; Chang, S.; Palucki, M.; Konsler, R. G.; Hansen, K. B.; Jacobsen,
E. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 1720–1723.
(3) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189–214.

(4) (a) Kolb, H. C.; VanNieuwenzhe, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483–2547. (b) Norrby, P.-O.; Rasmussen, T.; Haller, J.; Strassner, T.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 10186–10192

(5) (a) Ruiz, J.; Vivanco, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc. Chem. Commun. **1991**, 762–764. (b) Vivanco, M.; Ruiz, J.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics **1993**, *12*, 1802– 1810.

(6) Odom, A. L.; Cummins, C. C.; Protasiewicz, J. D. J. Am. Chem. Soc. **1995**, *117*, 6613–6614.

(7) (a) Crevier, T. J.; Mayer, J. M. J. Am. Chem. Soc. 1997, 119, 8485-8491. (b) Hall, K. A.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114, 10402-10411.

(8) Lim, B. S.; Sung, K.-M.; Holm, R. H. J. Am. Chem. Soc. 2000, 122,

7410-7411 and references therein. (9) Jin, N.; Bourassa, J. L.; Tizio, S. C.; Groves, J. T. Angew. Chem., Int. Ed. 2000, 39, 3849-3851.

(10) Bonanno, J. B.; Henry, T. P.; Neithamer, D. R.; Wolczanski, P. T.;
(10) Bonanno, J. B.; Henry, T. P.; Neithamer, D. R.; Wolczanski, P. T.;
(11) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. L. M.; Neithamer, D. R.; Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V. J. Organomet. Chem. 1999, 591, 194–203.

(12) Neithamer, D. R.; LaPointe, R. E.; Wheeler, R. A.; Richeson, D. S.; Van Duyne, G. D.; Wolczanski, P. T. J. Am. Chem. Soc. 1989, 111, 9056-9072

(13) Miller, R. L.; Toreki, R.; LaPointe, R. E.; Wolczanski, P. T.; Van Duyne, G. D.; Roe, D. C. J. Am. Chem. Soc. 1993, 115, 5570-5588.

(14) Spectroscopic information, magnetic measurements (Evans' method), and elemental analyses are available as Supporting Information.

HNbOSi^tBu₂CMe₂CH₂ (5-Nb, 23 °C, <5 min)¹⁴ competed with deoxygenation; 5-Nb then slowly deoxygenated 2, presumably via reversible formation of 1-Nb. The thermodynamics of deoxygenation¹⁵ were investigated by high-level quantum calculations,¹⁶ with (HO)₃M serving as the model of respective tris-silox centers in 1-M and 3-M. In each case the reaction was extremely exoergic (25 °C: M = V, $\Delta G^{\circ}_{rxn} = -66$ kcal/mol; M = Nb, Ta, -100 kcal/mol). With favorable thermodynamics, the uncompetitive (1-Ta) and relatively slow (1-V, 1-Nb) deoxygenations are puzzling.

Since $(silox)_3 V$ (1-V, S = 1) binds various L (L = THF, py, etc.), while $(silox)_3$ Ta (1-Ta, S = 0) does not,¹⁷ the singlet and triplet states of 1-M were examined via quantum calculations.¹⁶ Figure 1 reveals that 1-V is a triplet at the optimized geometries for S = 0 ($(d_{z^2})^2$) and S = 1 ($(d_{z^2})^1 (d_{xz}/d_{yz})^1$), and the T \rightarrow S barrier is 17 kcal/mol, assuming a facile intersystem crossing. 1-Ta is a singlet at the optimized S = 0 and S = 1 geometries and its intersystem crossing barrier is 17 kcal/mol. 1-Nb is a singlet, but the conversion barrier to a triplet of nearly the same energy is 2 kcal/mol. If the approach of (silox)₃WNO (2) to the 1-M center is linear because of intermolecular silox/silox interactions, then a 4e⁻ repulsion will result in the case of **1**-Ta, but successful docking to an S = 1 intermediate $(silox)_3MONW(silox)_3$ (1– M-2) will occur for M = V, Nb. The additional S-T barrier forced on 1-Ta allows unimolecular cyclometalation to compete with the bimolecular deoxygenation of **2**.

Table 1 lists the results of R_3PO deoxygenations by (1-V, Ta) and 1-NbL (L = 4-pic, PMe₃), which are predicted by quantum calculations to be exothermic for V (-15 kcal/mol) and Nb or Ta (-45 kcal/mol) with Me₃PO. Curiously, 1-Ta and 1-NbL both deoxygenated Me₃PO and Ph₃PO, but failed with ^tBu₃PO; 1-Ta cyclometalated to 5-Ta, 1-Nb(4-pic) converted to (silox)₃Nb= NCHCHCMeCHCH=Nb(silox)₃ (6; 85 °C, 35 d) and 4-picoline,¹⁸ and 1-NbPMe₃ decomposed. The inability to deoxygenate ^tBu₃-PO is not steric in origin, as an X-ray crystal structure of (silox)₃V-OP^tBu₃ (1-VOP^tBu₃) attests. R₃PO deoxygenation attempts with 1-V led to $(silox)_3$ V-OPR₃ (1-VOPR₃; R = Me, Ph, ^tBu),¹⁴ and prolonged thermolysis (100 °C, > 20 d) of (silox)₃VO (**3**-V) with PMe₃ afforded some 1-VOPMe₃, consistent with calculations that portray the phospine oxide adducts as the most stable species in the vanadium system.19,20

The S-T energetics of Figure 1 do not explain the slow rates of deoxygenation of (silox)₃WNO (2) by 1-NbL and 1-V, nor do they rationalize the disparate R_3PO (R = Me, Ph) and tBu_3PO results with 1-Ta and 1-NbL. Is there an intrinsic problem to O-atom transfer for 2 and ^tBu₃PO?

The smaller substrates Me₃PO and Ph₃PO may attack (silox)₃M (1-M; M = Nb, Ta) at the side of the PO bond, whereas O-atom transfer from (silox)₃WNO (2) and ^tBu₃PO may be sterically restricted to occur linearly.¹⁷ With substantial thermodynamic impetus, the deoxygenations are swift as long as (silox)₃M-OE

(15) Holm, R. H.; Donahue, J. P. Polyhedron 1993, 12, 571-593.

(16) Calculated energetics were determined at the CCSD(T)/SBK(d)// (16) Calculated energetics were determined at the CCSD[7]/SBK(d)/
B3LYP/SBK(d) level of theory. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Krauss, M.; Stevens, W. J.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612-630. (c) Bartlett, R. J.; Stanton, J. F. In Reviews in Computational Chemistry; Boyd, D. B., Lipkowitz, K. B., Eds.; VCH Publishers: New York, 1994; Vol. 5, pp 65-169. (17) Covert, K. J.; Neithamer, D. R.; Zonnevylle, M. C.; LaPointe, R. E.; Schaller, C. P.; Wolczanski, P. T. Inorg. Chem. 1991, 30, 2494-2508. (18) (a) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1997, 119, 247-248. (b) Kleckley, T. S. Ph.D. Thesis, Corrnell University 1998

Cornell University, 1998.

(19) Quantum calculations suggest $\Delta G^{\circ} \approx -20$ kcal/mol for (HO)₃V + $OPMe_3 \rightarrow (HO)_3 VOPMe_3$, and $\Delta G^{\circ} \approx -6$ kcal/mol for $(HO)_3 VO + PMe_3 -$ (HO)₃VOPMe₃.

(20) Similar intermediates have recently been identified in transferases: Smith, P. D.; Millar, A. J.; Young, C. G.; Ghosh, A.; Basu, P. J. Am. Chem. Soc. 2000, 122, 9298-9299.

[‡] Long Island University, Dept. of Chemistry, Brooklyn, New York 11201. [§] University of Memphis, Dept. of Chemistry, Memphis, Tennessee 38152.

Table 1. $(silox)_3M$ (1-M; M = V, Ta)/ $(silox)_3NbL$ (L = 4-pic, PMe₃) + EO \rightarrow $(silox)_3MO$ (3-M) + E and Related Reactions (C₆D₆ or C₇D₈)

$(silox)_3M/(silox)_3NbL$ 1 -M; M = V, Ta/ 1 -NbL	EO	$(silox)_3MO + other products$ 3- M; M = V, Nb, Ta	Е	$T(^{\circ}C)$	qualitative rate
1-V	(silox) ₃ WNO (2)	3-V	(silox) ₃ WN (4)	85	slow ^a
1 -Nb(4-pic)	2	3-Nb+4-pic	4	85	fast then slow ^b
1-NbPMe ₃	2	$3-Nb + PMe_3$	4	23	fast then slow ^c
1-Nb(4-pic) + 1-Ta	2	3-Nb + 5-Nb + 1-Ta(4-pic)	4	23	fast then slow ^d
1-Ta	2	5 -Ta (87%), 3 -Ta (12%)	4 (12%)	23^{e}	-
1-V	$R_3PO (R = Me, Ph, {}^tBu)$	(silox) ₃ VOPR ₃ (1-VOPR ₃)	_	100 ^f	-
1 -Nb(4-pic)	Me ₃ PO	3-Nb+4-pic	Me ₃ P	23	fast
1 -Nb(4-pic)	Ph ₃ PO	3-Nb+4-pic	Ph_3P	23	fast then slow ^g
1 -Nb(4-pic)	^t Bu ₃ PO	6 ^h	_	85^h	_
1 - Nb(4 - pic) + 1 - Ta	^t Bu ₃ PO ⁱ	5-Nb + 1-Ta(4-pic)	-	23	-
1-NbPMe ₃	$R_3PO (R = Me, Ph)$	$3-Nb + PMe_3$	R ₃ P	23	fast
1-NbPMe ₃	^t Bu ₃ PO ⁱ	no reaction ^{<i>j</i>}	_	23	_
1-Ta	$R_3PO (R = Me, Ph)$	3 -Ta	R ₃ P	23	fast
1 -Ta	^t Bu ₃ PO	5 -Ta	_	85	_

^{*a*} $k \approx 1.4 \times 10^{-4}$ M⁻¹ s⁻¹. ^{*b*} Inhibition by released 4-picoline. ^{*c*} Inhibition by PMe₃; 61% conversion after 2 d and 86% after 9 d; with 8 equiv of PMe₃, 10% conversion after 2 d. ^{*d*} Swift competitive deoxygenation and cyclometalation to **5**-Nb; **5**-Nb then deoxygenates **2** slowly. ^{*e*} At 85 °C and 11 h, 23% deoxygenation and 77% **5**-Ta. ^{*f*} No deoxygenation after 75 d. For R₃P + **3**-V \rightarrow **1**–VOPR₃: R = Me, 70% conversion after 86 d (100 °C), $k \approx 2 \times 10^{-7}$ M⁻¹ s⁻¹. ^{*s*} Inhibition by released 4-pic; 50% conversion at $t \approx 0$ and 85% conversion at $t \approx 15$ h. ^{*h*} After 35 d at 85 °C, sparingly soluble **6** produced. ^{*i*} 10 equiv. ^{*j*} Thermal degradation of **1**-NbPMe₃ affords multiple products.

Figure 1. Energetics (kcal/mol, 25 °C) of (HO)₃M (M = V, Nb, Ta) as models for (silox)₃M (M = V, 1-V; Nb, 1-Nb; Ta, 1-Ta). S and T refer to the singlet and triplet energies at those optimized geometries. S@T refers to the singlet energy at the optimized triplet geometry. Intersystem crossing barriers are indicated by the middle vertical lines.

Figure 2. Orbital correlation diagram for generic M-O-E \rightleftharpoons MO + E; energetics are based on EHMO calculations of M = (HO)₃V. Reactant (*S* = 1) states efficiently intersystem cross to product *S* = 0 states when reactant excited states with populated σ^* orbitals are mixed in effectively; the reduction in symmetry upon bending M-O-E facilitates this process.

(1-M-OE, S = 1) can be accessed and an additional electronic factor revealed in the molecular orbital diagram in Figure 2 can be overcome. Orbitals of the reactant ${}^{3}A_{2}$ ($C_{3\nu}$) (HO)₃M-OE complex are shown correlating with the ${}^{1}A_{1}$ product (HO)₃MO + E orbitals. There are only two σ -type orbitals on the reactant—the MO and OE bond pairs—but three on the products; lone pairs

on O and E, and the MO σ -bond. Consequently, correlation of a reactant σ^* orbital with a product σ -orbital is required in a linear O-atom transfer, but as the M–O–E angle decreases, σ -character can be mixed into low-lying π -type orbitals. Intersystem crossing must occur at a maximum for a linear O-atom transfer, because significant mixing with an ¹A₁ excited-state derived from population of the σ^* -orbital is needed to ensure conversion from the ³A₂ (reactant) state to the ¹A₁ (product) state;²¹ the greater the degree of bending in the M–O–E angle, the greater the σ/π -mixing, and intersystem crossing becomes more facile.

The mismatch in the numbers of occupied reactant and product σ -orbitals and its effect on intersystem crossing in O-atom transfer are related to several findings: (1) despite a ΔH°_{rxn} of -82 kcal/mol, N₂ scission in [{'Bu(3,5-Me₂C₆H₃)N}₃Mo](μ -N₂) has an appreciable barrier ($\Delta H^{\dagger} = 23.3$ (3) kcal/mol) and requires a kink in the MoNNMo linkage to facilitate triplet reactant/singlet product intersystem crossing;²² (2) enantioselective epoxidations using Jacobsen's catalyst require an olefin to approach the Mn-(oxo) at a low Mn–O–E angle;^{2,3,23} (3) O-atom transfers in bioinorganic systems have been calculated by DFT to occur via transition states with \angle M–O–E near 90°;²⁴ (4) phosphine oxide chelation may enable the necessary geometry for O-atom transfer;²⁵ and (5) O-atom transfers from Mn^VO are subject to spin-state crossing effects.²⁶

Acknowledgment. We thank the National Science Foundation (CHE-9528914 (P.T.W.) and CHE-9983665 (T.R.C.)) for financial support.

Supporting Information Available: Spectral and analytical data for all new compounds; experimental procedures; and computational details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA004329W

(21) Shaik, S.: Filatov, M.; Schroder, D.; Schwarz, H. Chem. Eur. J. 1998, 4, 193–199.

(25) Brock, S. L.; Mayer, J. M. Inorg. Chem. 1991, 30, 2138–2143.
 (26) Jin, N.; Groves, J. T. J. Am. Chem. Soc. 1999, 121, 2923–2924.

⁽²²⁾ Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. **1996**, *118*, 8623–8638.

^{(23) (}a) Cavallo, L.; Jacobsen, H. Angew. Chem., Int. Ed. 2000, 39, 589–592. (b) Linde, C.; Åkermark, B.; Norrby, P.-O.; Svensson, M. J. Am. Chem. Soc. 1999, 121, 5083–5084. (c) Linde, C.; Arnold, M.; Norrby, P.-O.; Åkermark, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 1723–1725.

^{(24) (}a) Pietsch, M. A.; Hall, M. B. *Inorg. Chem.* **1996**, *35*, 1273–1278.
(b) Pietsch, M. A.; Couty, M.; Hall, M. B. J. Phys. Chem. **1995**, *99*, 16315–16319.