Deoxygenations of (silox) ${ }_{3} \mathrm{WNO}$ and $\mathrm{R}_{3} \mathrm{PO}$ by $(\text { silox })_{3} \mathrm{M}(\mathrm{M}=\mathbf{V}, \mathrm{Ta})$ and $(\text { silox })_{3} \mathrm{NbL}$ (silox $=$ ${ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{SiO}$): Consequences of Electronic Effects

Adam S. Veige,${ }^{\dagger}$ Lee M. Slaughter, ${ }^{\dagger}$ Peter T. Wolczanski, ${ }^{*}{ }^{\dagger}$ Nikita Matsunaga, ${ }^{\ddagger}$ Stephen A. Decker, ${ }^{\S}$ and
Thomas R. Cundari*,§
Cornell University
Department of Chemistry and Chemical Biology
Baker Laboratory, Ithaca, New York 14853
Received December 27, 2000
Oxygen atom transfers involving terminal metal-oxo functionalities are central to many biological transformations, ${ }^{1}$ prominent in applications to organic synthesis, ${ }^{2-4}$ and of increasing importance in inorganic systems as synthetic tools, ${ }^{5-7}$ objectives in biomimicry, ${ }^{1,8,9}$ and targets of fundamental studies. ${ }^{5-13}$ As a synthetic route to $(\text { silox })_{3} \mathrm{WN}\left(4\right.$, silox $\left.={ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{SiO}\right)$, the deoxygenation of (silox) ${ }_{3} \mathrm{WNO}$ (2) by $(\text { silox })_{3} \mathrm{Ta}(\mathbf{1 - T a})$ was attempted without success, despite ample precedent in cleavages of epoxides, ${ }^{10} \mathrm{~N}_{2} \mathrm{O}, \mathrm{NO},{ }^{11} \mathrm{CO}_{2}$, and $\mathrm{CO} .{ }^{12} \mathrm{~A}$ comparison study involving sources of $\mathrm{M}(\text { silox })_{3}(1-\mathrm{M} ; \mathrm{M}=\mathrm{V}, \mathrm{Nb}, \mathrm{Ta})$ revealed that features of deoxygenations of 2 and $\mathrm{R}_{3} \mathrm{PO}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right)$ are the consequences of electronic effects enforced by a limiting steric environment.

Table 1. summarizes the deoxygenation studies, and shows that $(\text { silox })_{3} \mathrm{Ta}(1-\mathrm{Ta})$ preferred to cyclometalate to $(\text { silox })_{2}-$
$\mathrm{HTaOSi}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}(5-\mathrm{Ta}, 87 \%, 14 \mathrm{~d})^{13}$ rather than deoxygenate $(\text { silox })_{3} \mathrm{WNO}(2){ }^{14}$ to $(\text { silox })_{3} \mathrm{WN}(\mathbf{4}, 12 \%),{ }^{14}$ whereas the smaller (silox) ${ }_{3} \mathrm{~V}(\mathbf{1 - V})^{14}$ slowly ($85^{\circ} \mathrm{C}, \sim 1.4 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) converted 2 to the nitride. $(\text { silox })_{3} \mathrm{Nb}\left(\eta^{2}-\mathrm{N}, \mathrm{C}-4\right.$-picoline) $(1-\mathrm{Nb}-$ (4-pic), $S=0)^{11}$ and (silox $)_{3} \mathrm{NbPMe}_{3}\left(1-\mathrm{NbPMe}_{3}, S=1\right)^{14}$ deoxygenated 2 and formed 4 and (silox) ${ }_{3} \mathrm{NbO}(3-\mathrm{Nb})$ swiftly at first, then more slowly as the released 4-picoline and PMe_{3} inhibited the reactions, respectively. With a 4-picoline scavenger (1-Ta) present in the former, swift cyclometalation to $(\text { silox })_{2}{ }^{-}$

[^0]$\mathrm{HNbOSi}{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\left(\mathbf{5}-\mathrm{Nb}, 23^{\circ} \mathrm{C},<5 \mathrm{~min}\right)^{14}$ competed with deoxygenation; $\mathbf{5 - N b}$ then slowly deoxygenated $\mathbf{2}$, presumably via reversible formation of $1-\mathrm{Nb}$. The thermodynamics of deoxygenation ${ }^{15}$ were investigated by high-level quantum calculations, ${ }^{16}$ with $(\mathrm{HO})_{3} \mathrm{M}$ serving as the model of respective tris-silox centers in $\mathbf{1 - M}$ and $\mathbf{3 - M}$. In each case the reaction was extremely exoergic ($25^{\circ} \mathrm{C}: \mathrm{M}=\mathrm{V}, \Delta G^{\circ}{ }_{\mathrm{rxn}}=-66 \mathrm{kcal} / \mathrm{mol} ; \mathrm{M}=\mathrm{Nb}$, $\mathrm{Ta},-100 \mathrm{kcal} / \mathrm{mol})$. With favorable thermodynamics, the uncompetitive ($\mathbf{1}-\mathrm{Ta}$) and relatively slow ($\mathbf{1}-\mathrm{V}, 1-\mathrm{Nb}$) deoxygenations are puzzling.

Since $(\text { silox })_{3} \mathrm{~V}(1-\mathrm{V}, S=1)$ binds various L (L $=\mathrm{THF}$, py, etc.), while $(\text { silox })_{3} \mathrm{Ta}(\mathbf{1}-\mathrm{Ta}, S=0)$ does not, ${ }^{17}$ the singlet and triplet states of $\mathbf{1 - M}$ were examined via quantum calculations. ${ }^{16}$ Figure 1 reveals that $1-\mathrm{V}$ is a triplet at the optimized geometries for $S=0\left(\left(\mathrm{~d}_{z}\right)^{2}\right)$ and $S=1\left(\left(\mathrm{~d}_{z}\right)^{1}\left(\mathrm{~d}_{x z} / \mathrm{d}_{y z}\right)^{1}\right)$, and the $\mathrm{T} \rightarrow \mathrm{S}$ barrier is $17 \mathrm{kcal} / \mathrm{mol}$, assuming a facile intersystem crossing. 1-Ta is a singlet at the optimized $S=0$ and $S=1$ geometries and its intersystem crossing barrier is $17 \mathrm{kcal} / \mathrm{mol}$. $1-\mathrm{Nb}$ is a singlet, but the conversion barrier to a triplet of nearly the same energy is 2 $\mathrm{kcal} / \mathrm{mol}$. If the approach of $(\text { silox })_{3} \mathrm{WNO}(\mathbf{2})$ to the $\mathbf{1}-\mathrm{M}$ center is linear because of intermolecular silox/silox interactions, then a $4 \mathrm{e}^{-}$repulsion will result in the case of $1-\mathrm{Ta}$, but successful docking to an $S=1$ intermediate $(\text { silox })_{3} M O N W(\text { silox })_{3}(1-$ $\mathrm{M}-2$) will occur for $\mathrm{M}=\mathrm{V}, \mathrm{Nb}$. The additional $\mathrm{S}-\mathrm{T}$ barrier forced on 1-Ta allows unimolecular cyclometalation to compete with the bimolecular deoxygenation of $\mathbf{2}$.

Table 1 lists the results of $\mathrm{R}_{3} \mathrm{PO}$ deoxygenations by $(1-\mathrm{V}, \mathrm{Ta})$ and $1-\mathrm{NbL}\left(\mathrm{L}=4\right.$-pic, $\left.\mathrm{PMe}_{3}\right)$, which are predicted by quantum calculations to be exothermic for $\mathrm{V}(-15 \mathrm{kcal} / \mathrm{mol})$ and Nb or $\mathrm{Ta}(-45 \mathrm{kcal} / \mathrm{mol})$ with $\mathrm{Me}_{3} \mathrm{PO}$. Curiously, 1-Ta and 1-NbL both deoxygenated $\mathrm{Me}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{3} \mathrm{PO}$, but failed with ${ }^{\mathrm{t}} \mathrm{Bu} 3 \mathrm{PO} ; 1-\mathrm{Ta}$ cyclometalated to $5-\mathrm{Ta}, 1-\mathrm{Nb}(4-$ pic $)$ converted to $(\text { silox })_{3} \mathrm{Nb}=$ $\mathrm{NCHCHCMeCHCH}=\mathrm{Nb}(\text { silox })_{3}\left(6 ; 85^{\circ} \mathrm{C}, 35 \mathrm{~d}\right)$ and 4-picoline, ${ }^{18}$ and $1-\mathrm{NbPMe}_{3}$ decomposed. The inability to deoxygenate ${ }^{\mathrm{H}} \mathrm{Bu}_{3}{ }^{-}$ PO is not steric in origin, as an X-ray crystal structure of (silox) ${ }_{3} \mathrm{~V}$ -$\mathrm{OP'Bu}_{3}\left(1-\mathrm{VOP}{ }^{\mathrm{H}} \mathrm{Bu}_{3}\right)$ attests. $\mathrm{R}_{3} \mathrm{PO}$ deoxygenation attempts with 1-V led to $(\text { silox })_{3} \mathrm{~V}^{2}-\mathrm{OPR}_{3}\left(1-\mathrm{VOPR}_{3} ; \mathrm{R}=\mathrm{Me}, \mathrm{Ph},{ }^{\mathrm{t}} \mathrm{Bu}\right),{ }^{14}$ and prolonged thermolysis $\left(100^{\circ} \mathrm{C},>20 \mathrm{~d}\right)$ of $(\text { silox })_{3} \mathrm{VO}(3-\mathrm{V})$ with PMe_{3} afforded some 1-VOPMe 3 , consistent with calculations that portray the phospine oxide adducts as the most stable species in the vanadium system. ${ }^{19,20}$

The S -T energetics of Figure 1 do not explain the slow rates of deoxygenation of (silox) $3_{3} \mathrm{WNO}(\mathbf{2})$ by $\mathbf{1}-\mathrm{NbL}$ and $\mathbf{1}-\mathrm{V}$, nor do they rationalize the disparate $\mathrm{R}_{3} \mathrm{PO}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ and ${ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{PO}$ results with $\mathbf{1 - T a}$ and $\mathbf{1}-\mathrm{NbL}$. Is there an intrinsic problem to O -atom transfer for $\mathbf{2}$ and ${ }^{\mathrm{B}} \mathrm{Bu}_{3} \mathrm{PO}$?

The smaller substrates $\mathrm{Me}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{3} \mathrm{PO}$ may attack $(\text { silox })_{3} \mathrm{M}$ $(1-\mathrm{M} ; \mathrm{M}=\mathrm{Nb}, \mathrm{Ta})$ at the side of the PO bond, whereas O -atom transfer from (silox) ${ }_{3} \mathrm{WNO}$ (2) and ${ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{PO}$ may be sterically restricted to occur linearly. ${ }^{17}$ With substantial thermodynamic impetus, the deoxygenations are swift as long as (silox) ${ }_{3} \mathrm{M}-\mathrm{OE}$

[^1]Table 1. $(\text { silox })_{3} \mathrm{M}(1-\mathrm{M} ; \mathrm{M}=\mathrm{V}, \mathrm{Ta}) /(\text { silox })_{3} \mathrm{NbL}\left(\mathrm{L}=4\right.$-pic, $\left.\mathrm{PMe}_{3}\right)+\mathrm{EO} \rightarrow(\text { silox })_{3} \mathrm{MO}(3-\mathrm{M})+\mathrm{E}$ and Related Reactions $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ or $\left.\mathrm{C}_{7} \mathrm{D}_{8}\right)$

(silox) $)_{3} \mathrm{M} /(\text { silox })_{3} \mathrm{NbL}$ $\mathbf{1 - M} ; \mathrm{M}=\mathrm{V}, \mathrm{Ta} / \mathbf{1}-\mathrm{NbL}$	EO	$\begin{gathered} (\text { silox })_{3} \mathrm{MO}+\text { other products } \\ \text { 3-M; } \mathrm{M}=\mathrm{V}, \mathrm{Nb}, \mathrm{Ta} \end{gathered}$	E	$T\left({ }^{\circ} \mathrm{C}\right)$	qualitative rate
1-V	$(\text { silox })_{3} \mathrm{WNO}(2)$	3-V	$(\text { silox })_{3} \mathrm{WN}(4)$	85	slow ${ }^{\text {a }}$
1-Nb(4-pic)	2	$3-\mathrm{Nb}+4$-pic	4	85	fast then slow ${ }^{b}$
1-NbPMe ${ }_{3}$	2	$3-\mathrm{Nb}+\mathrm{PMe}_{3}$	4	23	fast then slow ${ }^{\text {c }}$
1-Nb(4-pic) $+1-\mathrm{Ta}$	2	$3-\mathrm{Nb}+5-\mathrm{Nb}+1-\mathrm{Ta}(4-\mathrm{pic})$	4	23	fast then slow ${ }^{\text {d }}$
1-Ta	2	5-Ta (87\%), 3-Ta (12\%)	4 (12\%)	23^{e}	-
1-V	$\mathrm{R}_{3} \mathrm{PO}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Ph},{ }^{t} \mathrm{Bu}\right)$	(silox) ${ }_{3} \mathrm{VOPR}_{3}\left(1 \mathrm{VVOPR}_{3}\right)$	-	100^{f}	-
1-Nb(4-pic)	$\mathrm{Me}_{3} \mathrm{PO}$	$3-\mathrm{Nb}+4$-pic	$\mathrm{Me}_{3} \mathrm{P}$	23	fast
1-Nb(4-pic)	$\mathrm{Ph}_{3} \mathrm{PO}$	$3-\mathrm{Nb}+4-\mathrm{pic}$	$\mathrm{Ph}_{3} \mathrm{P}$	23	fast then slow ${ }^{\text {g }}$
1-Nb(4-pic)	${ }^{t} \mathrm{Bu}_{3} \mathrm{PO}$	6^{h}	-	85^{h}	-
$\mathbf{1 - N b}(4-$ pic $)+\mathbf{1 - T a}$	${ }^{t} \mathrm{Bu}_{3} \mathrm{PO}^{i}$	$5-\mathrm{Nb}+1-\mathrm{Ta}(4-\mathrm{pic})$	-	23	-
1-NbPMe ${ }_{3}$	$\mathrm{R}_{3} \mathrm{PO}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$	$3-\mathrm{Nb}+\mathrm{PMe}_{3}$	$\mathrm{R}_{3} \mathrm{P}$	23	fast
$1-\mathrm{NbPMe}_{3}$	${ }^{t} \mathrm{Bu}_{3} \mathrm{PO}^{i}$	no reaction ${ }^{j}$	-	23	-
1-Ta	$\mathrm{R}_{3} \mathrm{PO}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$	3-Ta	$\mathrm{R}_{3} \mathrm{P}$	23	fast
1-Ta	${ }^{t} \mathrm{Bu}_{3} \mathrm{PO}$	5-Ta	-	85	-

${ }^{a} k \approx 1.4 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1} .{ }^{b}$ Inhibition by released 4-picoline. ${ }^{c}$ Inhibition by $\mathrm{PMe}_{3} ; 61 \%$ conversion after 2 d and 86% after 9 d ; with 8 equiv of $\mathrm{PMe}_{3}, 10 \%$ conversion after $2 \mathrm{~d} .{ }^{d}$ Swift competitive deoxygenation and cyclometalation to $\mathbf{5 - N b} ; \mathbf{5}-\mathrm{Nb}$ then deoxygenates $\mathbf{2}$ slowly. ${ }^{e}$ At $85{ }^{\circ} \mathrm{C}$ and $11 \mathrm{~h}, 23 \%$ deoxygenation and $77 \% \mathbf{5 - T a} .{ }^{f}$ No deoxygenation after 75 d . For $\mathrm{R}_{3} \mathrm{P}+\mathbf{3}-\mathrm{V} \rightarrow \mathbf{1}-\mathrm{VOPR}_{3}: \mathrm{R}=\mathrm{Me}, 70 \%$ conversion after 86 d $\left(100{ }^{\circ} \mathrm{C}\right), k \approx 2 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1} .{ }^{g}$ Inhibition by released 4-pic; 50% conversion at $t \approx 0$ and 85% conversion at $t \approx 15 \mathrm{~h} .{ }^{h} \mathrm{After} 35 \mathrm{~d}$ at $85{ }^{\circ} \mathrm{C}$, sparingly soluble 6 produced. ${ }^{i} 10$ equiv. ${ }^{j}$ Thermal degradation of $\mathbf{1}-\mathrm{NbPMe}_{3}$ affords multiple products.

Figure 1. Energetics ($\mathrm{kcal} / \mathrm{mol}, 25^{\circ} \mathrm{C}$) of $(\mathrm{HO}){ }_{3} \mathrm{M}(\mathrm{M}=\mathrm{V}, \mathrm{Nb}, \mathrm{Ta})$ as models for (silox) $)_{3} \mathrm{M}(\mathrm{M}=\mathrm{V}, \mathbf{1}-\mathrm{V} ; \mathrm{Nb}, \mathbf{1}-\mathrm{Nb} ; \mathrm{Ta}, \mathbf{1}-\mathrm{Ta}) . \mathrm{S}$ and T refer to the singlet and triplet energies at those optimized geometries. S@T refers to the singlet energy at the optimized triplet geometry. Intersystem crossing barriers are indicated by the middle vertical lines.

Figure 2. Orbital correlation diagram for generic $\mathrm{M}-\mathrm{O}-\mathrm{E} \rightleftarrows \mathrm{MO}+\mathrm{E}$; energetics are based on EHMO calculations of $\mathrm{M}=(\mathrm{HO})_{3} \mathrm{~V}$. Reactant ($S=1$) states efficiently intersystem cross to product $S=0$ states when reactant excited states with populated σ^{*} orbitals are mixed in effectively; the reduction in symmetry upon bending M-O-E facilitates this process.
(1-M-OE, $S=1$) can be accessed and an additional electronic factor revealed in the molecular orbital diagram in Figure 2 can be overcome. Orbitals of the reactant ${ }^{3} \mathrm{~A}_{2}\left(C_{3 v}\right)(\mathrm{HO})_{3} \mathrm{M}-\mathrm{OE}$ complex are shown correlating with the ${ }^{1} \mathrm{~A}_{1}$ product $(\mathrm{HO})_{3} \mathrm{MO}$ + E orbitals. There are only two σ-type orbitals on the reactantthe MO and OE bond pairs-but three on the products; lone pairs
on O and E , and the $\mathrm{MO} \sigma$-bond. Consequently, correlation of a reactant σ^{*} orbital with a product σ-orbital is required in a linear O -atom transfer, but as the $\mathrm{M}-\mathrm{O}-\mathrm{E}$ angle decreases, σ-character can be mixed into low-lying π-type orbitals. Intersystem crossing must occur at a maximum for a linear O-atom transfer, because significant mixing with an ${ }^{1} \mathrm{~A}_{1}$ excited-state derived from population of the σ^{*}-orbital is needed to ensure conversion from the ${ }^{3} \mathrm{~A}_{2}$ (reactant) state to the ${ }^{1} \mathrm{~A}_{1}$ (product) state; ${ }^{21}$ the greater the degree of bending in the $\mathrm{M}-\mathrm{O}-\mathrm{E}$ angle, the greater the σ / π mixing, and intersystem crossing becomes more facile.

The mismatch in the numbers of occupied reactant and product σ-orbitals and its effect on intersystem crossing in O -atom transfer are related to several findings: (1) despite a $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ of $-82 \mathrm{kcal} /$ $\mathrm{mol}, \mathrm{N}_{2}$ scission in $\left[\left\{{ }^{\mathrm{t}} \mathrm{Bu}\left(3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}\right\}_{3} \mathrm{Mo}\right]\left(\mu-\mathrm{N}_{2}\right)$ has an appreciable barrier ($\Delta H^{\ddagger}=23.3$ (3) $\mathrm{kcal} / \mathrm{mol}$) and requires a kink in the MoNNMo linkage to facilitate triplet reactant/singlet product intersystem crossing; ${ }^{22}$ (2) enantioselective epoxidations using Jacobsen's catalyst require an olefin to approach the Mn (oxo) at a low $\mathrm{Mn}-\mathrm{O}-\mathrm{E}$ angle; ${ }^{2,3,23}$ (3) O -atom transfers in bioinorganic systems have been calculated by DFT to occur via transition states with $\angle \mathrm{M}-\mathrm{O}-\mathrm{E}$ near $90^{\circ} ;{ }^{24}$ (4) phosphine oxide chelation may enable the necessary geometry for O-atom transfer; ${ }^{25}$ and (5) O -atom transfers from $\mathrm{Mn}^{\mathrm{V}} \mathrm{O}$ are subject to spinstate crossing effects. ${ }^{26}$

Acknowledgment. We thank the National Science Foundation (CHE9528914 (P.T.W.) and CHE-9983665 (T.R.C.)) for financial support.

Supporting Information Available: Spectral and analytical data for all new compounds; experimental procedures; and computational details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA004329W

[^2]
[^0]: ${ }^{\dagger}$ Cornell University.

 * Long Island University, Dept. of Chemistry, Brooklyn, New York 11201.
 § University of Memphis, Dept. of Chemistry, Memphis, Tennessee 38152.
 (1) (a) Cytochrome P450, Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed., Plenum: New York, 1995. (b) Enemark, J. H.; Young, C. G. Adv. Inorg. Chem. 1993, 40, 1-88.
 (2) (a) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Güler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948-954. (b) Finney, N. S.; Pospisil, P. J.; Chang, S.; Palucki, M.; Konsler, R. G.; Hansen, K. B.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 1720-1723.
 (3) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189-214.
 (4) (a) Kolb, H. C.; VanNieuwenzhe, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547. (b) Norrby, P.-O.; Rasmussen, T.; Haller, J.; Strassner, T.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 10186-10192.
 (5) (a) Ruiz, J.; Vivanco, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc. Chem. Commun. 1991, 762-764. (b) Vivanco, M.; Ruiz, J.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1993, 12, 18021810.
 (6) Odom, A. L.; Cummins, C. C.; Protasiewicz, J. D. J. Am. Chem. Soc. 1995, 117 , 6613-6614.
 (7) (a) Crevier, T. J.; Mayer, J. M. J. Am. Chem. Soc. 1997, 119, 84858491. (b) Hall, K. A.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114, 1040210411.
 (8) Lim, B. S.; Sung, K.-M.; Holm, R. H. J. Am. Chem. Soc. 2000, 122, 7410-7411 and references therein.
 (9) Jin, N.; Bourassa, J. L.; Tizio, S. C.; Groves, J. T. Angew. Chem., Int. Ed. 2000, 39, 3849-3851.
 (10) Bonanno, J. B.; Henry, T. P.; Neithamer, D. R.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118, 5132-5133.
 (11) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. L. M.; Neithamer, D. R.; Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V. J. Organomet. Chem. 1999, 591, 194-203.
 (12) Neithamer, D. R.; LaPointe, R. E.; Wheeler, R. A.; Richeson, D. S.; Van Duyne, G. D.; Wolczanski, P. T. J. Am. Chem. Soc. 1989, 111, 90569072.
 (13) Miller, R. L.; Toreki, R.; LaPointe, R. E.; Wolczanski, P. T.; Van Duyne, G. D.; Roe, D. C. J. Am. Chem. Soc. 1993, 115, 5570-5588.
 (14) Spectroscopic information, magnetic measurements (Evans' method), and elemental analyses are available as Supporting Information.

[^1]: (15) Holm, R. H.; Donahue, J. P. Polyhedron 1993, 12, 571-593.
 (16) Calculated energetics were determined at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{SBK}(\mathrm{d}) / /$ B3LYP/SBK(d) level of theory. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Krauss, M.; Stevens, W. J.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612-630. (c) Bartlett, R. J.; Stanton, J. F. In Reviews in Computational Chemistry; Boyd, D. B., Lipkowitz, K. B., Eds.; VCH Publishers: New York, 1994; Vol. 5, pp 65-169.
 (17) Covert, K. J.; Neithamer, D. R.; Zonnevylle, M. C.; LaPointe, R. E.; Schaller, C. P.; Wolczanski, P. T. Inorg. Chem. 1991, 30, 2494-2508.
 (18) (a) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1997, 119, 247-248. (b) Kleckley, T. S. Ph.D. Thesis, Cornell University, 1998.
 (19) Quantum calculations suggest $\Delta G^{\circ} \approx-20 \mathrm{kcal} / \mathrm{mol}$ for $(\mathrm{HO})_{3} \mathrm{~V}+$ $\mathrm{OPMe}_{3} \rightarrow(\mathrm{HO})_{3} \mathrm{VOPMe}_{3}$, and $\Delta G^{\circ} \approx-6 \mathrm{kcal} / \mathrm{mol}$ for $(\mathrm{HO})_{3} \mathrm{VO}+\mathrm{PMe}_{3} \rightarrow$ $(\mathrm{HO})_{3} \mathrm{VOPMe}_{3}$.
 (20) Similar intermediates have recently been identified in transferases: Smith, P. D.; Millar, A. J.; Young, C. G.; Ghosh, A.; Basu, P. J. Am. Chem. Soc. 2000, 122, 9298-9299.

[^2]: (21) Shaik, S.: Filatov, M.; Schroder, D.; Schwarz, H. Chem. Eur. J. 1998, 4, 193-199.
 (22) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623-8638.
 (23) (a) Cavallo ${ }_{\text {s L. }}$; Jacobsen, H. Angew. Chem., Int. Ed. 2000, 39, 589592. (b) Linde, C.; Akermark, B.; Norrby, P.-O.; Svensson, M. J. Am. Chem. Soc. 1999, 121, 5083-5084. (c) Linde, C.; Arnold, M.; Norrby, P.-O.; Akermark, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 1723-1725.
 (24) (a) Pietsch, M. A.; Hall, M. B. Inorg. Chem. 1996, 35, 1273-1278. (b) Pietsch, M. A.; Couty, M.; Hall, M. B. J. Phys. Chem. 1995, 99, 1631516319.
 (25) Brock, S. L.; Mayer, J. M. Inorg. Chem. 1991, 30, 2138-2143.
 (26) Jin, N.; Groves, J. T. J. Am. Chem. Soc. 1999, 121, 2923-2924.

